Polyketal microparticles for therapeutic delivery to the lung.

نویسندگان

  • Vincent F Fiore
  • Megan C Lofton
  • Susanne Roser-Page
  • Stephen C Yang
  • Jesse Roman
  • Niren Murthy
  • Thomas H Barker
چکیده

Inflammation in the setting of interstitial lung disease (ILD) occurs in the distal alveolar spaces of the lung, which presents significant challenges for therapeutic delivery. The development of aerosolizable microparticles from non-immunogenic polymers is needed to enable the clinical translation of numerous experimental therapeutics that require localization to the deep lung and repeated delivery for optimal efficacy. Polyketals (PK), a family of polymers, have several unique properties that make them ideal for lung delivery, specifically their hydrolysis into non-acidic, membrane-permeable compounds and their capacity to form microparticles with the aerodynamic properties needed for aerosolization. In this study, we tested the lung biocompatibility of microparticles created from a polyketal polymer, termed PK3, following intratracheal instillation in comparison to commonly used PLGA microparticles. We furthermore tested the initial efficacy of PK3 microparticles to encapsulate and effectively deliver active superoxide dismutase (SOD), a free radical scavenging enzyme, in a model of lung fibrosis. Our findings indicate that PK3 microparticles display no detectable level of alveolar or airway inflammation, whereas PLGA induced a small inflammatory response. Furthermore, SOD-loaded into PK3 microparticles maintained its activity upon release and, when delivered via PK3 microparticles, inhibited the extent of lung fibrosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibacterial loaded Spray Dried Chitosan Polyelectrolyte Complexes as Dry Powder Aerosol for the Treatment of Lung Infections

Inhalation delivery of aerosolized antibacterials is preferred over conventional methods of delivery for targeting lung infection. The present study is concerned with the development and characterization of a novel, spray dried, aerosolized, chitosan polyelectrolyte complex (PEC) based microparticles containing antibacterials for the treatment of lung infections.Chitosan polyelectrolyte complex...

متن کامل

Antibacterial loaded Spray Dried Chitosan Polyelectrolyte Complexes as Dry Powder Aerosol for the Treatment of Lung Infections

Inhalation delivery of aerosolized antibacterials is preferred over conventional methods of delivery for targeting lung infection. The present study is concerned with the development and characterization of a novel, spray dried, aerosolized, chitosan polyelectrolyte complex (PEC) based microparticles containing antibacterials for the treatment of lung infections.Chitosan polyelectrolyte complex...

متن کامل

Surface functionalization of polyketal microparticles with nitrilotriacetic acid-nickel complexes for efficient protein capture and delivery.

Microparticle drug delivery systems have been used for over 20 years to deliver a variety of drugs and therapeutics. However, effective microencapsulation of proteins has been limited by low encapsulation efficiencies, large required amounts of protein, and risk of protein denaturation. In this work, we have adapted a widely used immobilized metal affinity protein purification strategy to non-c...

متن کامل

Intrapulmonary Delivery of CpG Microparticles Eliminates Lung Tumors.

CpG oligonucleotides (ODN) stimulate the innate immune system by triggering cells that express TLR9. The resulting response promotes tumor regression, an effect optimized by delivery of CpG ODN to the tumor site. This work examines the effect of instilling CpG ODN adsorbed onto polyketal microparticles (CpG-MP) into the lungs of mice with non-small cell lung cancer. Intrapulmonary delivery of C...

متن کامل

The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)-poly(cytidylic acid).

New adjuvants and delivery strategies are needed to optimize the ability of protein-based vaccines to elicit CD8(+) T cell responses. We have developed a model vaccine formulation containing ovalbumin (OVA) and the double-stranded RNA analog poly(inosinic acid)-poly(cytidylic acid) (poly(I:C)), a TLR3 agonist. OVA and poly(I:C) were each ion-paired to cetyltrimethylammonium bromide (CTAB) to pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 31 5  شماره 

صفحات  -

تاریخ انتشار 2010